Abstract

Dynamic softening and substructural changes during hot deformation of a ferritic Fe-26Cr stainless steel were studied. The flow stress increased to reach a steady state in all the cases and the steady-state stress decreased with decreasing Z, the Zener-Hollomon parameter. A constant subgrain size was observed to correspond to the steady-state flow and the steady-state subgrain size increased with decreasing Z. Substructure examinations revealed that elongated, pancake-shaped subgrains formed in the early stage of deformation. Straight sub-boundaries and equiaxed subgrains developed progressively with strain, leading eventually to a stable substructure at strains greater than 0.7. During deformation at 1100 °C, dynamic recrystallization occurred by the migration and coalescence of subboundaries. Dynamic recovery dominated during deformation at 900 °C, resulting in the formation of fine equiaxed subgrains. Based on microstructural observations, the process of substructural changes during hot deformation was described by a schematic diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.