Abstract

Substrate-derived mesenchymal stem cell (MSC) spheroids show greater differentiation capacities than dispersed single cells in vitro. During spheroid formation, nanoparticles (NPs)/genes may be delivered into the cells. In this study, MSCs were conveniently labeled with superparamagnetic Fe3O4 NPs, or transfected with brain-derived neurotrophic factor (BDNF) gene, by the substrate-mediated NP/gene uptake. With the promising in vitro data showing the beneficial effect on neural development and neurotrophic factor expression, MSCs were combined with a polymeric nerve conduit to bridge a 10 mm transection gap of rat sciatic nerve. High-resolution (7-T) magnetic resonance imaging (MRI) was used to track the transplanted cells. Nerve regeneration was assessed by functional recovery and histology. Results revealed that Fe3O4 NP-labeled MSCs were successfully visualized by MRI in vivo. Animals receiving BDNF-transfected MSC spheroids demonstrated the shortest gap bridging time (<21 days), the largest regenerated nerve, and the thickest myelin sheath at 31 days. Compared to MSC single cells, the pristine or BDNF-transfected MSC spheroids significantly promoted the functional recovery of animals, especially for the BDNF-transfected MSC spheroids. The transplanted MSCs were incorporated in the regenerated nerve and differentiated into non-myelinating Schwann cells after 31 days. This study suggests that the substrate-mediated gene delivery and NP labeling may provide extra values for MSC spheroids to carry therapeutic/diagnostic agents in cell-based therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.