Abstract

ABSTRACTThermal effects on the crystal structure, electrical and optical characteristics of the Al and F co-doped ZnO films (ZnO:AlF3) are discussed in the paper. The ZnO:AlF3 thin films are prepared by RF sputtering with a constant power (ZnO/AlF3=100W/75W) toward the ZnO and AlF3 targets. The substrate temperature varied from room temperature to 250 °C with a step of 50 °C during thin film deposition. The crystalline quality of the ZnO:AlF3 film improved as the substrate temperature increased, with a corresponding increase in grain size. The improvement of the film quality leads to a higher electron mobility, with electron mobility of 0.85 cm2/V-s for the film deposited at the substrate temperature of 250 °C. The doping effect of fluorine in ZnO, and hence carrier concentration, was reduced at high temperature due to the vaporization of fluorine. This led to a reduction of carrier concentration with increase of temperature from 25 to 200°C. The corresponding resistivity increased from 3.60×10−2 to 6.0×10−2 Ω-cm. While for a further increase in substrate temperature, the doping of Al to the ZnO film was increased and resulted in an increase in carrier concentration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call