Abstract

Optical, structural and electronic properties of vanadium pentoxide (V2O5) thin films deposited with different values of substrate temperature have been investigated. First principles calculations were performed using the Full Potential Projector-Augmented Wave (PAW) method with the Generalized Gradient Approximation (GGA) implemented in Quantum Espresso code. The results are very promising and show that the temperature has an important effect on V2O5 thin films features. Dielectric functions for different thin films are calculated for 14-atom orthorhombic super-cell structure. The calculated band gaps are fitted with a linear equation: (αhv) 2 = A (hv − Eg) . For all types of deposited thin films the position of critical points (CPs) E0, E1 and E2 show good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call