Abstract

The collagenolytic protease from Uca pugilator was studied with respect to its catalytic properties on collagen types I-V. The crab protease degraded all five collagen types, producing multiple cleavages in the triple helix of each native collagen at 25 degrees C. The major early cleavage in the alpha 1 polypeptide chain of collagen types I-III occurred at a 3/4:1/4 locus, resulting in fragments electrophoretically similar to the TCA and TCB products of mammalian collagenase action. Interestingly, a propensity toward this same cleavage was observed even following thermal denaturation of the substrates. The ability of the crab protease to degrade all native collagen types and to catalyze cleavages at multiple loci in the triple helix distinguishes its action from that of mammalian collagenases. The collagenolytic activity of the crab protease was also examined on fibrillar collagen and compared to that of human skin fibroblast collagenase. Enzyme concentrations of fibroblast collagenase which resulted in the saturation of available substrate sites failed to show such an effect in the case of the crab protease. Binding studies of the crab protease to fibrillar collagen likewise indicated substantially reduced levels of enzyme binding in comparison to fibroblast collagenase. These data suggest that the affinity of the crab protease for native collagen is considerably less than the affinity of mammalian collagenase for this substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.