Abstract
Following the example set by studies of the mechanistic aspects of the substrate specificity of various cytochrome P-450 enzymes, we have undertaken a parallel investigation of the soluble methane monooxygenase from Methylococcus capsulatus (Bath). Soluble methane monooxygenase is a multicomponent enzyme with a broad substrate specificity. Using substrates previously tested with cytochrome P-450 enzymes and using purified enzyme preparations, this work indicates that soluble methane monooxygenase has a similar oxidative reaction mechanism to cytochrome P-450 enzymes. The evidence suggests that soluble methane monooxygenase oxidizes substrates via a nonconcerted reaction mechanism (hydrogen abstraction preceding hydroxylation) with radical or carbocation intermediates. Aromatic hydroxylation proceeds by epoxidation followed by an NIH shift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.