Abstract

N-Linked protein glycosylation is a very common post-translational modification that can be found in all kingdoms of life. The classical, highly conserved pathway entails the assembly of a lipid-linked oligosaccharide and its transfer to an asparagine residue in the sequon NX(S/T) of a secreted protein by the integral membrane protein oligosaccharyltransferase. A few species in the class of γ-proteobacteria encode a cytoplasmic N-glycosylation system mediated by a soluble N-glycosyltransferase (NGT). This enzyme uses nucleotide-activated sugars to modify asparagine residues with single monosaccharides. As these enzymes are not related to oligosaccharyltransferase, NGTs constitute a novel class of N-glycosylation catalyzing enzymes. To characterize the NGT-catalyzed reaction, we developed a sensitive and quantitative in vitro assay based on HPLC separation and quantification of fluorescently labeled substrate peptides. With this assay we were able to directly quantify glycopeptide formation by Actinobacillus pleuropneumoniae NGT and determine its substrate specificities: NGT turns over a number of different sugar donor substrates and allows for activation by both UDP and GDP. Quantitative analysis of peptide substrate turnover demonstrated a strikingly similar specificity as the classical, oligosaccharyltransferase-catalyzed N-glycosylation, with NX(S/T) sequons being the optimal NGT substrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.