Abstract
Calreticulin transacetylase (CRTAase) is known to catalyze the transfer of acetyl group from polyphenolic acetates (PA) to certain receptor proteins (RP), thus modulating their activity. Herein, we studied for the first time the substrate specificity of CRTAase towards N-acetylamino derivatives of coumarins and quinolones. This study is endowed with antiplatelet action by virtue of causing CRTAase catalyzed activation of platelet Nitric Oxide Synthase (NOS) by way of acetylation leading to the inhibition of ADP/Arachidonic acid (AA)-dependent platelet aggregation. Among all the N-acetylamino/acetoxy coumarins and quinolones screened, 7-N-acetylamino-4-methylcoumarin (7-AAMC, 17) was found to be the superior substrate to platelet CRTAase and emerged as the most promising antiplatelet agent both in vitro and in vivo. Further it caused the inhibition of cyclooxygenase-1 (Cox-1) resulting in the down regulation of thromboxane A2 (TxA2), modulation of tissue factor and the inhibition of platelet aggregation. It was also found effective in the inhibition of LPS induced pro-thrombotic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.