Abstract

The substrate specificity of bovine brain myelin basic protein (MBP)-specific protein methylase I ( S- adenosyl- l- methionine: protein- l- arginine N- methyltransferase, EC 2.1.1.23) , which methylates arginine residues of protein, has been studied using various MBPs, several synthetic peptides and heterogeneous nuclear ribonucleoprotein complex protein (hnRNP). (1) Among MBPs from different species of brain, the carp MBP was found to be the best substrate for MBP-specific protein methylase I. This high degree of methyl acceptability is most likely due to the fact that carp MBP is not in vivo methylated at the arginine residue (Deibler, G.E. and Martenson, R.E. (1973) J. Biol. Chem. 248, 2387–2391) and that the methylatable amino acid sequence is present in this protein. (2) In order to study the minimum chain length of MBP polypeptide which functions as the methyl acceptor, several synthetic polypeptides whose sequences are identical to the region surrounding the residue 107 of bovine MBP (the in vivo methylation site) were synthesized. It was found that the hexapeptide, Gly-Lys-Gly-Arg-Gly-Leu (corresponding to residues 104–109 of bovine MBP), was the shortest methyl accepting peptide, while the tetrapeptide, Gly-Arg-Gly-Leu (corresponding to residues 106–109) was inactive as a substrate. (3) hnRNP protein is known to contain methylarginine at residue 193 (Williams, K.R., Stone, K.L., LoPresti, M.B., Merrill, B.M. and Plank, S.R. (1985) Proc. Natl. Acad. Sci. USA 82, 5666–5670) which is post-translationally modified. Thus, the RNP protein overproduced in Escherichia coli and therefore did not contain methylarginine was examined for its methyl acceptability. It was found that neither MBP-specific nor histone-specific protein methylase I could methylate this methylarginine-less RNP protein. This suggests a possible existence of a distinct protein methylase I specific for this nuclear protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.