Abstract
Deprotonated zinc(II) and cadmium(II) complexes of a tridentate oxime nucleophile (1, OxH) show a very high reactivity, breaking by 2-3 orders of magnitude the previously established limiting reactivity of oximate nucleophiles in the cleavage of substituted phenyl acetates and phosphate triesters, but are unreactive with p-nitrophenyl phosphate di- and monoesters. With reactive substrates, these complexes operate as true catalysts through an acylation-deacylation mechanism. Detailed speciation and kinetic studies in a wide pH interval allowed us to establish as catalytically active forms [Cd(Ox)]+, [Zn(Ox)(OH)], and [Zn(Ox)(OH)2]- complexes. The formation of an unusual and most reactive zinc(II) oximatodihydroxo complex was confirmed by electrospray ionization mass spectrometry data and supported by density functional theory calculations, which also supported the previously noticed fact that the coordinated water in [Zn(OxH)(H2O)2]2+ deprotonates before the oxime. Analysis of the leaving group effect on the cleavage of phenyl acetates shows that the rate-determining step in the reaction with the free oximate anion is the nucleophilic attack, while with both zinc(II) and cadmium(II) oximate complexes, it changes to the expulsion of the leaving phenolate anion. The major new features of these complexes are (1) a very high esterolytic activity surpassing that of enzyme hydrolysis of aryl acetate esters and (2) an increased reactivity of coordinated oxime compared to free oxime in phosphate triester cleavage, contrary to the previously observed inhibitory effect of oxime coordination with these substrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.