Abstract

Tertbutylallylcobalttricarbonyl (tBu-AllylCo(CO)3) is shown to have strong substrate selectivity during atomic layer deposition of metallic cobalt. The interaction of tBu-AllylCo(CO)3 with SiO2 surfaces, where hydroxyl groups would normally provide more active reaction sites for nucleation during typical ALD processes, is thermodynamically disfavored, resulting in no chemical reaction on the surface at a deposition temperature of 140 °C. On the other hand, the precursor reacts strongly with H-terminated Si surfaces (H/Si), depositing ∼1 ML of cobalt after the first pulse by forming Si–Co metallic bonds. This remarkable substrate selectivity of tBu-AllylCo(CO)3 is due to an ALD nucleation reaction process paralleling a catalytic hydrogenation, which requires a coreactant that acts as a hydrogen donor rather than a source of bare protons. The chemical specificity demonstrated in this work suggests a new paradigm for developing selective ALD precursors. Namely, selectivity can be achieved by tailoring the li...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.