Abstract
Lipases from microorganisms (Candida cylindracea, Rhizopus arrhizus and Rhizomucor miehei), animal tissue (porcine pancreas) and a higher plant (rape, Brassica napus) have been evaluated as biocatalysts in the esterifications with n-butanol with regard to their substrate specificity towards fatty acids having a cis-4 unsaturation, e.g. docosahexaenoic (n-3 22:6), cis-6 unsaturation, e.g. petroselinic (n-12-18:1), γ-linolenic (n-6 18:3) and stearidonic (n-3 18:4), as well as cis-8 unsaturation, e.g. dihomo-γ-linolenic (n-6 20:3) acid, and fatty acids having unusual structures, e.g.cyclopentenyl (hydnocarpic and chaulmoogric), hydroxy (ricinoleic and 12-hydroxystearic) and epoxy (cis- and trans-9,10-epoxystearic) acids. A common feature of all the lipases tested is their ability to discriminate strongly against unsaturated fatty acids having a cis-4, cis-6 or a cis-8 unsaturation as substrates for esterification, whereas cyclopentenyl, hydrocy and epoxy acids are very well accepted as substrates. Esterification of the fatty acids of Hydnocarpus wightiana seed oil with n-butanol, catalysed by each of the above lipases, revealed that, as compared to the cyclopentenyl fatty acids having saturated alkyl chains, gorlic acid — a cyclopentenyl acid having a cis-6 unsaturation — is also strongly discriminated against as a substrate for esterification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.