Abstract

Achieving substrate-selectivity is a central element of nature's approach to synthesis. By relying on the ability of a catalyst to discriminate between components in a mixture, control can be exerted over which molecules will move forward in a synthesis. This approach can be powerful when realized but can be challenging to duplicate in the laboratory. In this work, substrate-selective catalysis is leveraged to discriminate between two intermediates that exist in equilibrium, subsequently directing the final cyclization to arrive at either the linear or angular tricyclic core common to subsets of azaphilone natural products. By using a flavin-dependent monooxygenase (FDMO) in sequence with an acyl transferase (AT), the conversion of several orcinaldehyde substrates directly to the corresponding linear tricyclic azaphilones in a single reaction vessel was achieved. Further, mechanistic studies support that a substrate equilibrium together with enzyme substrate selectivity play an import role in the selectivity of the final cyclization step. Using this strategy, five azaphilone natural products were synthesized for the first time as well as a number of unnatural derivatives thereof.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call