Abstract

Adjacent patches of alkanethiol molecules whose chain lengths range from 11 to 15 carbon atoms are fabricated by nanografting within a Self-Assembled Monolayer matrix. Atomic Force Microscopy and Electrostatic Force Microscopy are employed to investigate their structural and electronic properties, highlighting the key role of the substrate roughness. In particular, the topographic phase signal allows to establish an odd–even dependence of the local stiffness versus the alkyl chain length, while the electrostatic force signal provides evidence that the conformational order versus the alkyl chain length follows an asymmetric parabolic trend induced by the substrate roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.