Abstract

Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. This reflects tight and specific binding between ERK and the MKP-3 amino terminus with consequent phosphatase activation and dephosphorylation of the bound MAP kinase. We have used a series of p38/ERK chimeric molecules to identify domains within ERK necessary for binding and catalytic activation of MKP-3. These studies demonstrate that ERK kinase subdomains V-XI are necessary and sufficient for binding and catalytic activation of MKP-3. These domains constitute the major COOH-terminal structural lobe of ERK. p38/ERK chimeras possessing these regions display increased sensitivity to inactivation by MKP-3. These data also reveal an overlap between ERK domains interacting with MKP-3 and those known to confer substrate specificity on the ERK MAP kinase. Consistent with this, we show that peptides representing docking sites within the target substrates Elk-1 and p90(rsk) inhibit ERK-dependent activation of MKP-3. In addition, abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH(2) terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.

Highlights

  • Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases

  • Abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH2 terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the Dual specificity phosphatases (DSPs) gene family

  • Specific MKP-3 catalytic activation by ERK appears to account for its selectivity between MAP kinase subtypes [39]

Read more

Summary

Introduction

Mitogen-activated protein (MAP) kinase phosphatase-3 (MKP-3) is a dual specificity phosphatase that inactivates extracellular signal-regulated kinase (ERK) MAP kinases. Abolition of ERK-dependent phosphatase activation following mutation of a putative kinase interaction motif (KIM) within the MKP-3 NH2 terminus suggests that key sites of contact for the ERK COOH-terminal structural lobe include residues localized between the Cdc25 homology domains (CH2) found conserved between members of the DSP gene family.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call