Abstract

Mammalian polyamine transporters have not thus far been biochemically characterized. Since essential carboxy groups in the polyamine carrier might participate in the transport process, the ability of two different carbodi-imides to affect [3H]spermidine uptake was assessed in Chinese hamster ovary cells. Both the hydrophobic 1,3-dicyclohexylcarbodi-imide (DCC) and the more polar 1-ethyl-3-(3-dimethylaminopropyl)carbodi-imide (EDC) irreversibly inhibited spermidine transport with EC50 values of 11 +/- 4 and 96 +/- 16 microM after 30 min at 22 degrees C respectively. Prior treatment with EDC in the absence of substrate decreased both the Vmax and K(m) for spermidine uptake in a time- and concentration-dependent manner. Spermidine-transport inactivation by EDC (1 mM) was temperature-dependent, with 60 and 90% inhibition observed after 10 min at 22 and 37 degrees C respectively. Spermine (10 microM) almost fully protected against spermidine-transport inactivation by EDC at 22 degrees C, and decreased the rate of inactivation at 37 degrees C by about 80%. Putrescine, spermidine and spermine were all effective in protecting against EDC-mediated inactivation of [3H]spermidine and [3H]putrescine uptake at 22 degrees C with EC50 values estimated at 10, 1 and less than 1 microM respectively. The nucleophile glycine ethyl ester (up to 50 mM) prevented the inhibition brought about by 1 mM EDC. Inhibition by 1 mM EDC was greater at pH 7.2 than at pH 5.8 (89 +/- 3 compared with 44 +/- 5%), whereas the converse was true for 100 microM DCC (81 +/- 3 compared with 92 +/- 5%). On the other hand, spermine did not protect against inactivation of spermidine uptake by DCC. Moreover, DCC, but not EDC, inhibited Na(+)-dependent amino acid uptake. The present data indicate that (i) EDC and DCC inhibit polyamine transport through distinct mechanisms, (ii) substrate binding occludes one or several carboxy groups lying in a polar environment of the carrier and (iii) these carboxyl residues might be activated by EDC to crosslink a neighbouring nucleophile side group, resulting in a conformation of the polyamine carrier which is inactive for transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call