Abstract

Catalytic and physicochemical properties of representative fungal dye-decolorizing peroxidases (DyPs) of wood- (WRF) and litter-decomposing white-rot fungi (LDF) are summarized and compared, including one recombinant Mycetinis scorodonius DyP (rMscDyP; LDF), the wild-type Auricularia auricula-judae DyP (AauDyP; WRF), and two new DyPs secreted by the jelly fungi Exidia glandulosa (EglDyP; WRF) and Mycena epipterygia (MepDyP; LDF). Homogeneous preparations of these DyPs were obtained after different steps of fast protein liquid chromatography, and they increase the total number of characterized fungal DyP proteins to eight. The peptide sequences of AauDyP, MepDyP, and EglDyP showed highest homologies (52-56%) to the DyPs of M. scorodonius. Five out of the eight characterized fungal DyPs were used to evaluate their catalytic properties compared to classic fungal and plant heme peroxidases, namely lignin peroxidase of Phanerochaete chrysosporium (PchLiP; WRF), versatile peroxidase of Bjerkandera adusta (BadVP; WRF), and generic peroxidases of Coprinopsis cinerea (CiP) and Glycine max (soybean peroxidase=SBP). All DyPs tested possess unique properties regarding the stability at low pH values: 50-90% enzymatic activity remained after 4-h exposition at pH 2.5, and the oxidation of nonphenolic aromatic substrates (lignin model compounds) was optimal below pH 3. Furthermore, all DyPs efficiently oxidized recalcitrant dyes (e.g., Azure B) as well as the phenolic substrate 2,6-dimethoxyphenol. Thus, DyPs combine features of different peroxidases on the functional level and may be part of the biocatalytic system secreted by fungi for the oxidation of lignin and/or toxic aromatic compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.