Abstract

The influence of substrate orientation on the morphology of graphene growth on 6H-SiC(0 0 0 1) was investigated using low-energy electron and scanning tunneling microscopy (LEEM and STM). Large area monolayer graphene was successfully furnace-grown on these substrates. Larger terrace widths and smaller step heights were obtained on substrates with a smaller mis-orientation from on-axis (0.03°) than on those with a larger (0.25°). Two different types of a carbon atom networks, honeycomb and three-for-six arrangement, were atomically resolved in the graphene monolayer. These findings are of relevance for various potential applications based on graphene–SiC structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call