Abstract

Understanding the principles underlying the self-organization of stem cells into tissues is fundamental for deciphering human embryo development. Here, we report that, without three-dimensional (3D) extracellular matrix (ECM) overlay, human pluripotent stem cells (hPSCs) cultured on two-dimensional soft elastic substrates can self-organize into 3D cysts resembling the human epiblast sac in a stiffness-dependent manner. Our theoretical modeling predicts that this cyst organization is facilitated and guided by the spontaneous nesting of the soft substrate, which results from the adhesion-dependent mechanical interaction between cells and substrate. Such substrate nesting is sufficient for the 3D assembly and polarization of hPSCs required for cyst organization, even without 3D ECM overlay. Furthermore, we identify that the reversible substrate nesting and cyst morphogenesis also require appropriate activation of ROCK-Myosin II pathway. This indicates a unique set of tissue morphomechanical signaling mechanisms that clearly differ from the canonical cystogenic mechanism previously reported in 3D ECM. Our findings highlight an unanticipated synergy between mechanical microenvironment and mechanotransduction in controlling tissue morphogenesis and suggest a mechanics-based strategy for generation of hPSCs-derived models for early human embryogenesis. Statement of significanceSoft substrates can induce the self-organization of human pluripotent stem cells (hPSCs) into cysts without three-dimensional (3D) extracellular matrix (ECM) overlay. However, the underlying mechanisms by which soft substrate guides cystogenesis are largely unknown. This study shows that substrate nesting, resulting from cell–substrate interaction, plays an important role in cyst organization, including 3D assembly and apical–basal polarization. Additionally, actomyosin contractility mediated by the ROCK-Myosin II pathway also contributes to the substrate deformation and cyst morphology. These findings demonstrate the interplay between the mechanical microenvironment and cells in tissue morphogenesis, suggesting a mechanics-based strategy in building hPSC-derived models for early human embryo development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call