Abstract
The regulation of cell motility by ligand density on substrates with variable microtopography is not well understood. In this report, we studied the adhesion and motility behavior of HepG2 cells on microtextured poly(glycolic-co-lactic)acid (PGLA) copolymer substrates, whose surface bioactivity was differentially modified through the adsorption of 0-5.5 ng/cm(2) collagen. Microtextured PGLA substrates were fabricated as thin films with a uniform surface distribution of micropores of median size of 3.1 +/- 1.5 microm and three-dimensional root mean squared roughness of 0.253 microm. Even in the absence of collagen, cells on microtextured substrates responded to substrate topography by exhibiting a 200% increase in adhesion strength compared with untextured controls and ventral localization of the intracellular adhesion protein vinculin. Further enhancement in adhesion strength (420% over untextured, untreated substrates) was demonstrated with bioactivated, microtextured surfaces, indicating that cell adhesion responses to topography and surface ligand density were cooperative. Our motility studies of cells on untextured substrates adsorbed with different levels of collagen demonstrated that a classical biphasic relationship between the cell population averaged migration rate, mu, and the collagen ligand density was preserved. However, comparison of cell motility responses between untextured and microtextured substrates indicates that the motility versus ligand density curve shifted, such that equivalent levels of cell motility were achieved at lower ligand density on microtextured surfaces. Furthermore, the maximum mu values achieved on the microtextured substrates exceeded those on untextured substrates by twofold. Taken together, we show that the magnitude of subcellular scale microtexture of a polymer substrate can sensitize the cell motility responsiveness to substrate ligand concentration; we suggest that the underlying mechanisms involve alteration in the degree of cell-substrate adhesivity as well as changes in the nature of ligand-induced cell activation processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.