Abstract

Differential derepression of the genome of potato tuber cells can be initiated by slicing the tissue into disks. The consequence of this procedure on the cells of the wound surface is dedifferentiation and cell division followed by redifferentiation to a suberized phellem cell. The drift of glucose-, glucose-1-phosphate-, glucose-6-phosphate-, fructose-6-phosphate- and 6-phospho-gluconatelevels has been determined in the derepressed tissue. With the exception of 6-phospho-gluconate all intermediates so far investigated showed a rise in concentration after derepression. This is interpreted as a consequence of altered enzymic activities which were estimated for phosphoglucomutase, hexokinase, phosphoglucoisomerase, gluco-6-phosphate- and 6-phosphogluconatedehydrogenase. The two dehydrogenases were activated after derepression, the activation represented a de-novo-synthesis, as was demonstrated with the inhibitors Actidione (translation) and p-Fluorophenyl-alanine (protein synthesis in general). Hexokinase and phosphoglucoisomerase were not severely affected by cutting the tissue. Phosphoglucomutase was degrated rapidly, the degradation being dependent on protein synthesis. The importance of an enhanced activity of the pentose phosphate shunt for the stressed cell is emphasized and the possibility of an alteration in the osmotic pressure within the cell and especially in the nucleus — a primary consequence of wounding — as a cause of derepression in potato tuber cells is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.