Abstract

We present an evaluation of the qualitative and quantitative effects that high concentrations of benzene and toluene have on the growth rate of several pure cultures that use these compounds as their sole carbon and energy source. The cultures employed were five widely studied environmental isolates: Pseudomonas putida F1, P. putida mt2, P. mendocina KR, Ralstonia pickettii PKO1, and Burkholderia cepacia G4. Three cultures degraded toluene following a pattern consistent with the kinetic model of Wayman and Tseng (1976) while the other two followed a modification of this model introduced by Alagappan and Cowan (2001). The pattern followed for benzene degradation was different than that for toluene degradation for all four capable pure cultures and consistent with that described by the model of Luong (1987). Mechanisms of substrate inhibition and solvent toxicity are discussed, used to conceptually evaluate the reasons for the differences in inhibition behavior, and used to support a call for more widespread use of the empirical, terminal substrate concentration inhibition models employed here. We also present the methodology developed to overcome a limitation commonly encountered when attempting to collect oxygen uptake data for use in quantifying substrate inhibition kinetics. The experimental method was effective for use in the collection of high quality data and the substrate inhibition models most useful in representing the growth of bacteria on these solvents are those that show a complete loss of activity at high concentration rather than the more popular asymptotic inhibition models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call