Abstract
Studies of the interactions of dienelactone hydrolase (DLH) and its mutants with both E and Z dienelactone substrates show that the enzyme exhibits two different conformational responses specific for hydrolysis of each of its substrate isomers. DLH facilitates hydrolysis of the Z dienelactone through an unusual charge-relay system that is initiated by interaction between the substrate carboxylate and an enzyme arginine residue that activates an otherwise non-nucleophilic cysteine. The E dienelactone does not display this substrate-arginine binding interaction, but instead induces an alternate conformational response that promotes hydrolysis. Furthermore, the substitution of cysteine 123 for serine (C123S) in DLH, instead of inactivating the enzyme as is typical for this active-site mutation, changes the catalysis from substrate hydrolysis to isomerisation. This is due to the deacylation of the acyl-enzyme intermediates being much slower, thereby increasing their lifetimes and allowing for their interconversion through isomerisation, followed by relactonisation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.