Abstract
The present study uses CO as a surrogate for oxygen to probe how substrate binding triggers oxygen activation in peptidylglycine monooygenase (PHM). Infrared stretching frequencies (ν(C ≡ O)) of the carbonyl (CO) adducts of copper proteins are sensitive markers of Cu(I) coordination and are useful in probing oxygen reactivity because the electronic properties of O2 and CO are similar. The carbonyl chemistry has been explored using PHM WT and a number of active site variants in the absence and presence of peptidyl substrates. We have determined that upon carbonylation (i) a major CO band at 2092 cm-1 and a second minor CO band at 2063 cm-1 are observed in the absence of peptide substrate Ac-YVG; (ii) the presence of peptide substrate amplifies the minor CO band and causes it to partially interconvert with the CO band at 2092 cm-1; (iii) the substrate-induced CO band is associated with a second conformer at CuM; and (iv) the CuH-site mutants, which are inactive, fail to generate any substrate-induced CO bands. The total intensity of both bands is constant, suggesting that the Cu(I)M-site partitions between the two carbonylated enzyme states. Together, these data provide evidence for two conformers at CuM, one of which is induced by binding of the peptide substrate with the implication that this represents the conformation that also allows binding and activation of O2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.