Abstract

The toxin HlyA is exported from Escherichia coli, without a periplasmic intermediate, by a type I system comprising an energized inner-membrane (IM) translocase of two proteins, HlyD and the traffic ATPase HlyB, and the outer-membrane (OM) porin-like TolC. These and the toxin substrate were expressed separately to reconstitute export and, via affinity tags on the IM proteins, cross-linked in vivo complexes were isolated before and after substrate engagement. HlyD and HlyB assembled a stable IM complex in the absence of TolC and substrate. Both engaged HlyA, inducing the IM complex to contact TolC, concomitant with conformational change in all three exporter components. The IM-OM bridge was formed primarily by HlyD, which assembled to stable IM trimers, corresponding to the OM trimers of TolC. The bridge was transient, components reverting to IM and OM states after translocation. Mutant HlyB that bound, but did not hydrolyse ATP, supported IM complex assembly, substrate recruitment and bridging, but HlyA stalled in the channel. A similar picture was evident when the HlyD C-terminus was masked. Export thus occurs via a contiguous channel which is formed, without traffic ATPase ATP hydrolysis, by substrate-induced, reversible bridging of the IM translocase to the OM export pore.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.