Abstract

The design considerations for a spectra modifying, light scattering layer for amorphous silicon solar cells were investigated. Efficient commercially available phosphors absorb one near IR photon and one near UV photon and emit one photon in the visible spectrum. Thereby such phosphors offer the possibility to convert two poorly utilized portions of the solar spectrum to photons that are converted to electric energy with high quantum efficiency in amorphous silicon-based solar cells. Large band gap, conductive, a-SiC:H and a-SiN:H are attractive matrices for phosphors as scattered light and emitted photons are thereby directed towards the underlying solar cell structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.