Abstract

The substrate effects on the electronic transport properties of single-layer graphene on TiO2/Si substrate have been studied. The Hall mobility, sheet carrier density, and transport lifetime were obtained from the temperature-dependent Hall measurements, while the in-plane effective mass, quantum lifetime was obtained from the temperature-dependent variation of the Shubnikov de Haas (SdH) oscillations that were made at 1.8 to 45 K temperature range and up to the magnetic field of 11 T. The measurement results showed that in SLG/TiO2/Si sample, there were 2.36 ± 0.12x1016 m-3 amounts of 3D carriers coming from the substrate. In our previous studies, 3D carrier densities were measured as 6.07x1016 m-3 and zero for SLG/SiO2/Si and SLG/SiC sample, respectively. This result shows that the 3D carriers formed in the structure are significantly changed by a substrate.The scattering mechanisms were determined using the τt/τq ratio. The ratio values obtained as 3.66. This value obtained was compared with the values we found for SLG/SiC (τt/τq=1.36) sample and SLG/TiO2/Si (τt/τq=3.08) sample our previous study. The results show that small-angle scattering is dominant in SLG/SiC sample, but large-angle scattering is dominant in SLG/SiO2/Si and SLG/TiO2/Si samples.The charged impurity scattering is the dominant scattering mechanism in SLG/TiO2/Si and SLG/SiO2/Si samples, whereas in SLG/SiC samples, a short-range scattering mechanism such as lattice defects can be said to affect the electronic transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call