Abstract

Electron Beam Lithography (EBL) process strongly depends on the type of the applied lithographic system, composed of electron sensitive polymers and the substrate. Moreover, applied acceleration voltage changes the volume of Backscattered Electrons (BSE) participation in total energy absorption in resist layers. Proper estimation of energy distribution in used materials, due to electron scattering, is the key in final resist profile calculation and critical parameter in the designing process of the lithography exposure. In the presented paper, the Monte Carlo (MC) simulations of electron beam influence on lithographic system, consisting of positive tone resists (PMMA/MA and CSAR-62) spin coated on different substrates, will be presented. For high accuracy, obtained point spread functions were modelled by double-Gaussian function for Si, GaAs, AlGaN/GaN and InP substrates, respectively. Extracted scattering parameters of forward and backward electrons will be shown and their differences will be discussed. Results of simulated and conducted process of 100 nm metallic path fabrication on mentioned materials will be presented and compared. The practical usage of EBL technique will be shown in the aspect off low resolution application in low energy range of primary electron beam.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.