Abstract
The present study investigated interfacial reactions between Cu substrates and Bi-Ag alloys during soldering. Without forming intermetallic compounds (IMCs), the molten solder grooved and further penetrated along the grain boundaries (GBs) of the Cu substrate. An increase in Ag content enhanced GB grooving, raised the dissolution rate and also the amount of dissolved Cu in molten Bi. A stoichiometric Cu-Bi phase formed isothermally in liquid solders and considerably affected the Cu dissolution kinetics. The results also show that Bi-Ag/Cu joints possessed a better shear strength than the Pb-Sn/Cu, which implies that mechanical bonding by grain-boundary grooves was strong enough to withstand shear deformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.