Abstract

We report large lateral magnetoelectric (ME) coupling coefficients α31 of and in substrate bonded and free-standing multiferroic BaTiO3-CoFe2O4 (BTO-CFO) core-shell nanofibers (NFs) with and without substrate clamping effect, respectively. The BTO-CFO core-shell NFs were synthesised by a sol-gel coaxial electrospinning technique, and their ME coupling was directly observed by demonstrating the evolution of piezoelectric coefficient (d33), ferroelectric domain, and phase contrast induced by an external magnetic field. These impressed α31 coefficients originated from the nanoconfinement of the interphase elastic interaction between the ferromagnetic core fiber and the ferroelectric shell interlayer, as well as the strain transformation at the one-dimensional (1D) fiber boundary. This means that the decreasing substrate clamping effect results in an enhanced ME coupling in multiferroic NFs, which is similar to that of thin films. These findings make people understand the substrate clamping effect and enable nanoscale ME device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.