Abstract

Atomically dispersed single-atom catalysts have recently attracted broad research interest due to their high atom efficiency and unique catalytic performance. In this study, atomic dispersion of cobalt is achieved using a chemical bath deposition method on a highly stable alkali titanate film (Ti/KTiO). These films were characterized using a variety of techniques, with atomic dispersion confirmed via grazing incidence X-ray absorption spectroscopy and ab initio modeling of single-atom systems. This modeling indicated that the alkali ion incorporated into the film facilitates atomic dispersion. Experimentally, the Ti/KTiO-supported Co(OH)2 catalysts exhibited remarkable electrochemical performance, with an overpotential of 163 mV to achieve a current density of 10 mA cm-2 with a catalyst loading of ∼0.1 mg cm-2 and high stability. These results show the potential of Ti/KTiO/Co(OH)2 catalysts for atomically efficient hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.