Abstract
Ambient observation of magnetic domain structures by magnetic force microscopy (MFM) in La{sub 0.67}Sr{sub 0.33}MnO{sub 3} films has not yet been clearly correlated with stresses induced by kinetic or thermodynamic growth processes or the compressive (LaAlO{sub 3}) or tensile (SrTiO{sub 3}) nature of the film-substrate lattice mismatch. Although domain-like magnetic structures have been seen in some as-grown films and related to substrate-induced stress and film thickness, no magnetic structure has been seen for other films grown under similar conditions on the same pair of substrates. In this study the authors have grown films over a range of temperatures by pulsed-laser deposition, using the above substrates, to determine the relationship between growth and stress-induced magnetic structures. Results from scanning tunneling, atomic force, and magnetic force microscopies, measurements of temperature-dependent magnetization and structure-dependent coercivity show the relationship between growth and magnetic properties. Maze-like domain structures, with separations between 150 nm and 200 nm, were only observed for the thicker films grown at the highest temperature, 800 C. Application of an in-plane magnetic field converted these domain structures to stripe-like domains whose spacing and out of plane component decreased as the field was increased.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.