Abstract

The conserved residue Gly47 of the chloroplast ATP synthase beta subunit was substituted with Leu, Arg, Ala and Glu by site-directed mutagenesis. This process generated the mutants epsilon G47L, epsilon G47R, epsilon G47A and epsilon G47E, respectively. All the beta variants showed lower inhibitory effects on the soluble CF1(-epsilon) Ca2+-ATPase compared with wild-type epsilon. In reduced conditions, epsilon G47E and epsilon G47R had a lower inhibitory effect on the oxidized CF1(-epsilon) Ca2+-ATPase compared with wild-type epsilon. In contrast, epsilon G47L and epsilon G47A increased the Ca2+-ATPase activity of soluble oxidized CF1(-epsilon). The replacement of Gly47 significantly impaired the interaction between the subunit epsilon and gamma in an in vitro binding assay? Further study showed that all epsilon variants were more effective in blocking proton leakage from the thylakoid membranes. This enhanced ATP synthesis of the chloroplast and restored ATP synthesis activity of the reconstituted membranes to a level that was more efficient than that achieved by wild-type epsilon. These results indicate that the conserved Gly47 residue of the epsilon subunit is very important for maintaining the structure and function of the epsilon subunit and may affect the interaction between the epsilon subunit, beta subunit of CF1 and subunit III of CFo, thereby regulating the ATP hydrolysis and synthesis, as well as the proton translocation role of the subunit III of CFo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.