Abstract
The deposition of amyloid protein aggregates in brain is the main pathological feature of Alzheimer's disease. Their principal constituent is a peptide termed βA4, which comprises up to 43 amino acid residues. It is highly insoluble under physiological conditions and aggregates into filaments that form very dense clusters in vivo and in vitro. Based on a βA4 prototype sequence spanning residues 10 to 42 or 43, we have designed analogues in which hydrophobic amino acid residues in position 17 to 20 were substituted by more hydrophilic residues. Depending on the kind of newly introduced amino acids and their position within the sequence, the substitution of only two residues led to variants exhibiting a broad spectrum of different properties. Common to them was a reduced β-sheet content after solubilization in water and in the solid state. Some of the variants showed significantly reduced amyloidogenicity: although still forming filaments, they did not aggregate into the highly condensed depositions that are typical for amyloid. In addition, they could be solubilized in 200 m M-NaCl and KCl. When mixed with βA4 peptides bearing the natural sequence, two of the analogues could inhibit the formation of filaments in vitro. These results demonstrate that a well-preserved hydrophobic core around residues 17 to 20 of βA4 is crucial for the formation of β-sheet structure and the amyloid properties of βA4. The introduction of structural alterations within this region may guide the development of reagents for the therapy of Alzheimer's disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.