Abstract

ABSTRACTPhotoassisted molecular beam epitaxy (PAMBE), in which the substrate is illuminated during film growth, is being employed in a new approach to controlled substitutional doping of II–VI compound semiconductors. Substitutional doping of these materials has been a long standing problem which has severely limited their applications potential. The PAMBE technique gives rise to dramatic changes in the electrical properties of as-grown epilayers. In particular, highly conducting n-type and p-type CdTe films have been grown using indium and antimony as n-type and p-type dopants, respectively. Double-crystal x-ray rocking curve data indicate that the doped epilayers are of high structural quality. Successful n-type doping of CdMnTe, a dilute magnetic semiconductor, with indium has also been achieved. Most recently, the photoassisted growth technique has been employed to prepare doped CdMnTe-CdTe quantum well structures and superlattices. In addition, HgCdTe films which exhibit excellent optical and electrical properties as well as exceptional structural perfection have been grown by the PAMBE technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call