Abstract

Based on previous work by the authors the diffusion equations for a multicomponent solid are derived. Generation and annihilation of vacancies are described by an evolution law which is directly coupled with an eigenstrain rate. Manning’s correlation factor f is used in the kinetic factor for diffusion of vacancies. In addition to presentation of the diffusion equations, a rigorous treatment of the boundary conditions, assuming no or an ideal source and sink for vacancies at the surface, is presented. As an instructive example development of the site fractions of the components and the eigenstress state are demonstrated for a multicomponent chemically inhomogeneous layer on a substrate. Both the role of nonlinear terms and the correlation factor f in the diffusion equations are studied. Computational procedures to calculate to the proper boundary conditions are also outlined.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.