Abstract

Considering the growing rate of global wind power and overall benefits of the permanent magnet synchronous generator (PMSG) wind turbines, the future demand for high-performing NdFeB magnet and its constituent elements is likely to increase. Future deployment of wind power generation may be affected by potential disruptions in supply and price rises of critical rare earth elements. By evaluating the substitution options for the rare earths permanent magnet-based wind turbines at the material and component levels, this paper shows that substitution has a real potential to alleviate the pressure on the supply of rare earths in the wind industry. Rare earth-free turbines with good efficiency levels were already developed and could be further adopted. Alternatively, the future demand for rare earths, in particular for dysprosium, could be reduced by improving material efficiency. The future market share of rare earth-based wind turbines will most likely depend on the evolution of the price of rare earths and the techno-economic advantages of PMSG in comparison to alternative technologies that use no rare earths elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call