Abstract
Rates of nucleotide substitution for nuclear genes are thought to be governed primarily by the number of germ line replication events (the so-called "generation time" hypothesis). In contrast, rates of mitochondrial DNA evolution appear to be set primarily by DNA damage pathways of mutation mediated by mutagenic by-products of oxidative phosphorylation (the so-called "metabolic-rate" hypothesis). Comparison of synonymous substitution rates estimated for the mitochondrial cytochrome b gene and nuclear-encoded dlx, hsp70, and RAG-1 genes in mammals and sharks shows that rates of molecular evolution for sharks are approximately an order of magnitude slower than those for mammals for both nuclear and mitochondrial genes. In addition, there is significant positive covariation of substitution rate for mitochondrial and nuclear genes within sharks. These results, interpreted in light of the pervasiveness of DNA damage by mutagenic by-products of oxygen metabolism to both nuclear and mitochondrial genes and coupled with increasing evidence for cross-genome activity of DNA repair enzymes, suggest that molecular clocks for mitochondrial and nuclear genes may be set primarily by common mutational mechanisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.