Abstract

We present a comparative study of the spectroscopic properties of the donor-acceptor-donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitrile-triphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.