Abstract
During development, changes occur in both the sites of erythropoiesis and the globin genes expressed at each developmental stage. Previous work has shown that high-level expression of human beta-like globin genes in transgenic mice requires the presence of the locus control region (LCR). Models of hemoglobin switching propose that the LCR and/or stage-specific elements interact with globin gene sequences to activate specific genes in erythroid cells. To test these models, we generated transgenic mice which contain the human Agamma-globin gene linked to a 576-bp fragment containing the human beta-spectrin promoter. In these mice, the beta-spectrin Agamma-globin (betasp/Agamma) transgene was expressed at high levels in erythroid cells throughout development. Transgenic mice containing a 40-kb cosmid construct with the micro-LCR, betasp/Agamma-, psibeta-, delta-, and beta-globin genes showed no developmental switching and expressed both human gamma- and beta-globin mRNAs in erythroid cells throughout development. Mice containing control cosmids with the Agamma-globin gene promoter showed developmental switching and expressed Agamma-globin mRNA in yolk sac and fetal liver erythroid cells and beta-globin mRNA in fetal liver and adult erythroid cells. Our results suggest that replacement of the gamma-globin promoter with the beta-spectrin promoter allows the expression of the beta-globin gene. We conclude that the gamma-globin promoter is necessary and sufficient to suppress the expression of the beta-globin gene in yolk sac erythroid cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.