Abstract

Human glutamate dehydrogenase (GDH) exists in GLUD1 (housekeeping) and in GLUD2-specified (brain-specific) isoforms, which differ markedly in their basal activity and allosteric regulation. To determine the structural basis of these functional differences, we mutagenized the GLUD1 GDH at four residues that differ from those of the GLUD2 isoenzyme. Functional analyses revealed that substitution of Ser for Arg-443 (but not substitution of Thr for Ser-331, Leu for Met-370, or Leu for Met-415) virtually abolished basal activity and totally abrogated the activation of the enzyme by l-leucine (1-10 mm) in the absence of other effectors. However, when ADP (0.025-0.1 mm) was present in the reaction mixture, l-leucine (0.3-6.0 mm) activated the mutant enzyme up to >2,000%. The R443S mutant was much less sensitive to ADP (SC(50) = 383.9 +/- 14.6 microm) than the GLUD1 GDH (SC(50) = 31.7 +/- 4.2 microm; p < 0.001); however, at 1 mm ADP the V(max) for the mutant (136.67 micromol min(-1) mg(-1)) was comparable with that of the GLUD1 GDH (152.95 micromol min(-1) mg(-1)). Varying the composition and the pH of the reaction buffer differentially affected the mutant and the wild-type GDH. Arg-443 lies in the "antenna" structure, in a helix that undergoes major conformational changes during catalysis and is involved in intersubunit communication. Its replacement by Ser is sufficient to impair both the catalytic and the allosteric function of human GDH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.