Abstract

The lectin pathway (LP) of complement activation depends on the activation of the MBL-associated serine proteases (MASPs) circulating in complex with mannan-binding lectin (MBL). MBL deficiency is the most common complement deficiency and has been associated with several pathological conditions. As we had previously shown, plasma-derived MBL (pdMBL) contains pre-activated MASPs that upon in vivo pdMBL substitution results in restoration of MBL concentrations but no LP functionality due to immediate inactivation of pdMBL–MASP complexes upon infusion. In this study, we analyzed MBL-sufficient and -deficient serum by size-exclusion chromatography for complexes of LP activation. In both sera, we identified non-bound free forms of MASP-2 and to lesser extent MASP-1/3. After addition of recombinant MBL (rMBL) to MBL-deficient serum, these free MASPs were much less abundantly present, which is highly suggestive for the formation of high-molecular complexes that could still become activated upon subsequent ligand binding as shown by a restoration of C4-deposition of MBL-deficient serum. Ficolin (FCN)-associated MASPs have been described to redistribute to ligand-bound MBL, hereby forming new MBL/MASP complexes. However, reconstitution of MBL-deficient serum with rMBL did not change the relative size of the FCN molecules suggestive for a limited redistribution in fluid phase of already formed complexes. Our findings demonstrate that rMBL can associate with free non-bound MASPs in fluid phase while preserving full restoration of LP functionality. In contrast to pdMBL products containing pre-activated MASPs which become inactivated almost immediately, these current data provide a rationale for substitution studies using rMBL instead.

Highlights

  • The complement system is an intricate and subtle cascade comprising more than 50 soluble and cell-bound proteins to defend against a wide range of bacterial and fungal pathogens

  • We investigated the association of recombinant MBL (rMBL) with mannan-binding lectin (MBL)-associated serine proteases (MASPs) in MBL-deficient serum

  • Our data demonstrated the unexpected presence of free non-complexed MASP-1/3 and MASP-2 that could associate to fluid-phase rMBL when added to MBL-deficient serum

Read more

Summary

Introduction

The complement system is an intricate and subtle cascade comprising more than 50 soluble and cell-bound proteins to defend against a wide range of bacterial and fungal pathogens. The complement system has an array of different functions, which includes opsonization and lysis of pathogens, elimination of immune complexes, and stimulation and chemotaxis of leukocytes [1, 2]. The complement system is divided into three activating pathways, which all converge into the so-called terminal pathway. The alternative pathway is spontaneously activated on surfaces that lack complement regulatory proteins and can act as an amplification loop for both the CP and the LP. All three activating pathways converge at the level of C3 and can subsequently activate the terminal pathway to form the membrane attack complex for complement-mediated lysis of target cells

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.