Abstract

The kinetics in heptane of displacement of the alkene ligands ethene and methyl acrylate from Ru(CO)4(η2-alkene) by P(OEt)3 have been measured. The reactions occur by reversible dissociation of the alkenes, and activation parameters are compared with those for dissociation of CO from Ru(CO)5 and for reactions of the corresponding Os complexes. A linear free energy relationship for ligand dissociation from Ru(CO)5, Ru(CO)4(C2H4) and Ru(CO)4(MA) has a gradient close to unity, indicating virtually complete bond breaking in the transition states. Competition parameters for reactions of what is probably a solvated Ru(CO)4S intermediate have been measured for the alkenes and P(OEt)3, and for eleven other P-donor nucleophiles. Correlations with the electronic and steric properties of the P-donors show negligible dependence on the electron donicity of the nucleophiles and a small but significant dependence on their sizes. The sizes were quantified by Tolman cone angles or by ‘cone angle equivalents’ derived directly from Brown's ligand repulsion energies (Er). These correlations compared with those, reported elsewhere, for reactions of the probably solvated intermediates Co2(CO)5(μ2-C2Ph2) and H3Re3(CO)11 formed by ligand dissociative processes. In all cases the discrimination between nucleophiles by the intermediates is weak confirming their high reactivity and the borderline nature of the mechanisms of these bimolecular reactions between Id and Ia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.