Abstract
The formation of triple-helical DNA is implicated in the regulation of gene expression. The triplexes are, however, unstable under physiological conditions so that effective stabilizers for the triplex formation are needed. Herein, we describe a new strategy for the stabilization of such triplexes that is based on antitumor substitution-inert polynuclear platinum complexes (SI-PPCs). These compounds were previously shown to bind to DNA through the phosphate clamp-a discrete mode of DNA-ligand recognition distinct from the canonical intercalation and minor-groove binding. We have found that SI-PPCs efficiently inhibit DNA synthesis by DNA polymerase in sequences prone to the formation of pyrimidine- and purine-motif triplex DNAs. Moreover, the results suggest that SI-PPCs are able to induce the formation of triple-helical DNA between duplexes and strands that are not completely complementary to each other. Collectively, these data provide evidence that SI-PPCs are very efficient stabilizers of triple-stranded DNA that might exert their action by stabilizing higher-order structures such as triple-helical DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.