Abstract

Compounds condensing DNA and RNA molecules can essentially affect important biological processes including DNA replication and transcription. Here, this work shows with the aid of total intensity light scattering, gel electrophoresis, and atomic force microscopy (AFM) that the substitution-inert polynuclear platinum complexes (SI-PPCs), particularly [{trans-Pt(NH3 )2 (NH2 (CH2 )6 - NH3 + )}2 -μ-{trans-Pt(NH3 )2 (NH2 (CH2 )6 NH2 )2 }]8+ (Triplatin NC), exhibit an unprecedented high potency to condense/aggregate fragments of DNA and RNA as short as 20 base pairs. SI-PPCs condensates are distinctive from those generated by the naturally occurring polyamines (commonly used DNA compacting/condensing agents). Collectively, the results further confirm that SI-PPCs are very efficient inducers of condensation of DNA and RNA, including their short fragments that might have potential in gene therapy, biotechnology, and bionanotechnology. Moreover, the data confirm the structural advantages of the phosphate clamp, with a well-defined rigid DNA recognition motif in initiating condensation and aggregation phenomena on oligonucleotides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.