Abstract

X-linked Charcot-Marie-Tooth type 1 X (CMTX1) disease is a subtype of Charcot-Marie-Tooth (CMT), which is mainly caused by mutations in the GJB1 gene. It is also known as connexin 32 (Cx32) that leads to Schwann cell abnormalities and peripheral neuropathy. CMTX1 is considered as the second most common form of CMT disease. The aim of this study is to computationally predict the potential impact of different single amino acid substitutions at position 75 of Cx32, from arginine (R) to proline (P), glutamine (Q) and tryptophan (W). This position is known to be highly conserved among the family of connexin. To understand the structural and functional changes due to these single amino acid substitutions, we employed a homology-modeling technique to build the three-dimensional structure models for the native and mutant proteins. The protein structures were further embedded into a POPC lipid bilayer, inserted into a water box, and subjected to molecular dynamics simulation for 50 ns. Our results show that the mutants R75P, R75Q and R75W display variable structural conformation and dynamic behavior compared to the native protein. Our data proves useful in predicting the potential pathogenicity of the mutant proteins and is expected to serve as a platform for drug discovery for patients with CMT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.