Abstract

Structure, lattice parameters, spontaneous magnetization (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> ), and the Curie temperature (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> ) of MnAlGe and MnGaGe compounds with the Cu <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Sb-type structure and their substituted compounds were investigated. Cr substitution for Mn enhanced I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">s</sub> and T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> , whereas Fe substitution for Mn degraded them. These behaviors are in accord with the previously reported results, and are also common to the MnGaGe compound series. For MnAlGe, lattice parameter a increases by 0.2% and 0.4% for Cr and Fe substitution, while c changes by +0.1% and -1.3%, respectively. For MnGaGe, a decreases by 0.08% for Cr and increases by 0.2% for Fe substitution, while c changes by +0.5% and -1.0%, respectively. T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> tended to increase with increasing length of c, suggesting that the interlayer distance between Mn layers is a key factor related to the height of T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C</sub> , i.e., the strength of the magnetic exchange interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call