Abstract

The substitution of methyl (Me or -CH3) by trifluoromethyl (TFM or -CF3) is frequently used in medicinal chemistry. However, the exact effect of -CH3/-CF3 substitution on bioactivity is still controversial. We compiled a data set containing 28 003 pairs of compounds with the only difference that -CH3 is substituted by -CF3, and the statistical results showed that the replacement of -CH3 with -CF3 does not improve bioactivity on average. Yet, 9.19% substitution of -CH3 by -CF3 could increase the biological activity by at least an order. A PDB survey revealed that -CF3 prefers Phe, Met, Leu, and Tyr, while -CH3 prefers Leu, Met, Cys, and Ile. If we substitute the -CH3 by -CF3 near Phe, His, and Arg, the bioactivity is most probably improved. We performed QM/MM calculations for 39 -CH3/-CF3 pairs of protein-ligand complexes and found that the -CH3/-CF3 substitution does achieve a large energy gain in some systems, although the mean energy difference is subtle, which is consistent with the statistical survey. The -CF3 substitution on the benzene ring could be particularly effective at gaining binding energy. The maximum improvements in energy achieved -4.36 kcal/mol by QM/MM calculation. Moreover, energy decompositions from MM/GBSA calculations showed that the large energy gains for the -CH3/-CF3 substitution are largely driven by the electrostatic energy or the solvation free energy. These findings may shed some light on the biological activity profile for -CH3/-CF3 substitution, which should be useful for further drug discovery and drug design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.