Abstract
The bis(ethylene) Rh species TpMe2Rh(C2H4)2(1*) (TpMe2 = tris(3,5-dimethyl-1-pyrazol-1-yl)hydroborate) has been obtained from [RhCl(C2H4)2]2 and KTpMe2. Complex 1* easily decomposes in solution to give mainly the butadiene species TpMe2Rh(eta74-C4H6). In the solid state its thermal decomposition follows a different course and the allyl TpMe2RhH(syn-C3H4Me) is cleanly obtained as a mixture of exo and endo isomers. The complexes Tp'Rh(C2H4)2 (Tp' = Tp, TpMe2) afford the monosubstituted species Tp'Rh(C2H4)(PR3) upon reaction with PR3 but react differently with L = CO or CNR: the Tp compound gives dinuclear [TpRh]2(mu-L)3 complexes, while, in the case of 1*, TpMe2Rh(C2H4)(L) species are obtained. The ethylene ligand of complexes TpMe2Rh(C2H4)(PR3) is labile, and several peroxo compounds of composition TpMe2Rh(O2)(PR3) have been isolated by their reaction with O2. All the mononuclear Rh(I) complexes are formulated as 18e- trigonal bipyramidal species on the basis of IR and NMR spectroscopic studies. A series of dihydride complexes of Rh(III) of formulation Tp'RhH2(PR3) have been prepared by the hydrogenation of the corresponding ethylene derivatives. Complexes [TpRh]2(mu-CNCy)3, TpMe2Rh(C2H4)(PEt3), and TpMe2Rh(O2)(PEt3) have been further characterized by X-ray diffraction studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.