Abstract

AbstractIn the present work, a finite element (FE) analysis was employed to validate the use of advanced carbon fibre composites as replacement of traditional low‐alloy steel in the construction of the main runway frame structure of a laser cutting equipment currently available in the market. This new composite solution was adopted to increase the current laser equipment precision and cutting speed. The main objective was to enhance the machine cutting performance by using much stiffer and lighter main structural runway frames to support the machine cutting head and all major laser beam mirrors and lens, which allows decreasing dramatically the inertial and vibration efforts developed in service through the use of carbon fibre composites. The paper presents, compares and discusses the mechanical and dynamical behaviour obtained in the FE simulations made by using both solutions, the current one based on a steel frame and the new innovative composite adopted structure. The processing method to be used in the production of the innovative composite structure is also proposed. Finally, as production costs may also have an important impact on final equipment commercial price and acceptation, an economical study considering both manufacturing situations (currently used and new one) are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.